
The Linearization Method" 
Principal Concepts and Perspective Directions 

B. N. P S H E N I C H N Y I  and A. A. SOSNOVSKY 
V. M. Glushkov Institute of Cybernetics, Ukrainian Academy of Sciences, Kiev, Ukraine 

(Received: 5 October 1990; accepted: 13 November 1992) 

Abstract. The linearization method, for solving the general problem of nonlinear programming and its 
various modifications, is considered. On the basic ideas of the linearization method, the algorithms for 
solving the various problems of mathematical programming are constructed for (a) solving systems of 
equalities and inequalities, (b) multiobjective programming and (c) complementary problem. 
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1. Introduction 

The linearization method as the method of a numerical solution of systems of 
nonlinear equalities and inequalities was first formulated in [1]. The algorithm 
constructed in [1] was the generalization of Newton's well-known method for 
general systems of equalities and inequalities and it employed the basic idea of 
this method - the replacement of the nonlinear system by its first linear approxi- 
mation at each step. To this end, a need arose for including additional 
mechanisms which allows one to choose a single solution from a set of solutions of 
the linearized system. A smooth penalty for great deviations from the current 
approximation was chosen as such a mechanism, since under great deviations, the 
precision of approximation of a nonlinear system by a linear one is somewhat 
curtailed. 

In [2] the linearization method was formulated as applied to solving the general 
problem of nonlinear programming. To provide global convergence, the non- 
smooth penalty function was used here. The algorithm of the paper [2] is the 
effective working tool in numerical solutions of nonlinear programming problems. 

In recent years the linearization method was analyzed from a theoretical point 
of view; a set of problems being solved by this method was extended, its 
modifications were suggested, and rules of changing algorithm parameters were 
improved [3, 4, 5, 6-9]. Wide experience in practical solutions of problems has 
been gained which shows a high efficiency of the method. These changes and 
peculiarities, analysis of the state of the linearization method in a concise form, 
are presented in [14]. 

It turned out that the basic ideas of the linearization method are useful for 
solving not only the general problem of nonlinear programming but also a number 
of problems closely connected to the usual problem of mathematical 
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programming-the system of equalities and inequalities, the multiobjective 
programming and the complementary problem. It is the aim of this paper to 
present the computational methods for solving these problems and a comprehen- 
sive investigation into the properties of the formulated algorithms. We present 
little or no proofs since the facts given below either have already been published 
or may be obtained with the help of a simple change of the known constructions. 

2. Notation 

The subsequent presentation will be carried out in the n-dimensional Euclidian 
space Nn with the usual inner product xry of x, y E Nn and norm Ilxll of x E Rn. 
Components of vectors are denoted by x r = ( X l , X 2 , . . .  ,xn) where the 
superscript T denotes the opposite. Thus x is a column-veCtor. Inequalities for 
vectors will be understood as inequalities for all corresponding elements of 
vectors. Gradients of smooth functions f (x ) ,  gi(x), i E {1, 2 , . . . ,  n} are denoted 
by Vf/(x), Vgi(x), i E {1, 2 , . . .  , n} and are the row vectors. The matrix of first 
derivatives (Jacobian matrix) is denoted by Vf(x) and Vg(x) for the respective 
functions. 

3. Principal Concepts 

The main problem for the solution of which the linearization method was 
formulated is the general nonlinear programming problem. It is required to 
minimize the function fo(X), x E Nn, with constraints f(x)~< 0, i E I, where I is a 
finite set of indices, i.e., in a concise form, 

NP:min(f0(x ) l f (x )<~0,  i = 1 , 2 , . . . , m ) .  

As in the majority of methods for solving nonlinear problems, each step of the 
linearization method requires the choice of direction of the shift and the value of 
this shift. The efficiency of the algorithm depends on a successful solution of the 
problem of this choice. 

To extend Newton's method to a solution of the problem NP, it is primarily 
natural to replace the problem NP by the linear approximation 

NPx: min{f0(x ) + Vfo(x)pl f(x  ) + Vf/(x)p ~< 0, i = 1, 2 , . . .  , m} 

with a subsequent transfer to a new point x + p. 
It is clear that such an attempt results in a number of difficulties. The principal 

difficulty arises in the fact that even though the constraints of the problem NP x are 
consistent, the value of the lower bound equals - %  and NP x has no bounded 
solution. One of the methods for overcoming this difficulty is found in that 
constraints of the problem NP x should be supplemented with the inequality 
I[p ll ~< e. Unfortunately, this leads to the inconsistency of the problem constraints 
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for small s > 0 and requires the additional procedure of changing e. This difficulty 
has not been adequately overcome. Besides, as a rule, the solution p(x) of the 
problem NPx, supplemented with the constraint Hp[I ~< e, has a norm equal to e 
(this constraint is active) that leads to the low rate of convergence because of the 
need to subdivide the length of the shift along the direction p(x), up to zero. 

The second way to modify the problem of NP x with the aim that its solution 
exist and be finite, is to reduce the number of constraints of this problem and take 
into account the fact that large p poorly approximates the initial problem of NP, 
through introducing an additional quadratic term into the objective function of 
the problem NP x. Thus we come to the main auxiliary problem 

NP2: min{Vf0(x)p + �89 Ilpll2l f/(x) + vf~(x)p ~< 0 ,  i @ I~(x)}, 

where I~(x)= ( i l F ( x ) ~ f ~ ( x ) - 6 } ,  ~ > 0 ,  F(x) =max{0,  f s (X) , . . .  ,fm(X)}. 
This problem is associated with the dual problem 

1 
DNP~: max -~-liVfo(X) + Z u Vf/(x)ll 2 

i fiI,~(x) 

-~ Z uifi(x)[ui ~ 0  , iE Ia (x )} .  
i~Ia(x)  

If constraints of the problem NPx ~ are consistent it has a unique solution: p(x). 
Denote the corresponding solution of the dual problem by ui(x). (If the solution 
DNPx ~ is not unique we choose any one.) 

Now we choose p(x) as a direction of the shift from the point x to construct the 
next approximation: x + ~p(x). The second main concept now involves choosing a 
size of step ~ from condition of the descending penalty function OPN(X ) =f0(x) + 
NF(x) under a suitable value N > 0. The question is what value N is suitable. The 
following result gives the answer to this question: if N >  Zici~(x ) u i, then the 
successive halving of a = 1 up to the first fulfillment of the inequality 

~N(X + ~p(x)) ~ ~N(X) -- ~IIp(x)I I  2 , ~ ~ (0, 1) (3.1) 

will be completed in the finite number of steps. 
Thus due to the fact that the auxiliary problem NP~ does not depend on N, its 

solution answers the question of whether the value N is chosen correctly. The 
fundamental role of the fact of independence of NP~ of N is emphasized by the 
following theorem which serves as the basis for constructing the methods with 
accelerated convergence. 

T H E O R E M  3.1. For the point x to satisfy the constraints of the problem NP and 
establish the minimum necessary conditions of the form 
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vf0(x) + u V(x) = 0 ,  
i=1 

uifii(x)=O, ui>~O, i = 1 , 2  . . . .  , m  

it is necessary and sufficient that p(x) = O. 

Thus, p(x) not only serves for construction of successive approximations but at 
the same time is an indicator of a solution. 

On the basis of the above we may now formulate the algorithm to solve the 
problem NP. For its operation some parameters N > O, 6 > O, e ~ (0, 1) and the 
initial point x ~ should be established. We assume the following: 

1. The d o m a i n  ~N(X O) = (X I f~N(x) ~ (I)N(X0)} is compact; 
2. in this domain, the gradients of all functions entering into the problem 

satisfy the Lipschitz condition; 
3. for x E ~2N(X ~ the problem NP~ is solvable and therein may be found a 

U i solution for the dual problem DNPx ~ that Zie~,(x ~ < N. 
The steps of the linearization method algorithm, when the point x ~ is already 

constructed, consists of the following: 
1. We solve the problem NP~k and find p(xk). 
2. By halving o~ = 1 successfully we find a k as the first for which the inequality 

(3.1) is satisfied for x = x  k. 
3. We put x k+l = x  k + akp(xk). 

The properties of the given algorithm are summarized in the following theorem. 

T H E O R E M  3.2. Under the above assumptions the sequence {x k} o f  points 
generated by the algorithm has the following properties: 

(a) the sequence {x ~} is bounded; 
(b) F(xk)---~O and p(xk)---~0; 
(c) there exists the number ~ > 0 such that ~ ~ >1 d; 
(d) any limit point x k o f  the sequence {x k} satisfies the constraints o f  the initial 

problem NP and the necessary minimum conditions; 
(e) the linear programming problem is solved in a finite number of  steps, and 

f rom some moment  on a k = 1; 
(f) if  we put  ui(x k) = O, i)~.I~(xk), then vectors u(x k) --- (ul(xk), . . . , um(x~)) r 

are bounded and their limit point is Lagrangian multipliers for  the initial 
problem NP. �9 

Thus, the theorem shows the algorithm convergence in a universally adopted 
sense. The discussion of the assumptions under which this convergence is proved 
and the estimation of its rate can be found in [10-13] or in concise form in [14]. 
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4. Systems of Equalities and Inequalities 

In this section, the linearization method is applied to solving systems of equalities 
and inequalities. It proves that in this case one can succeed in constructing 
effective algorithms which have a fast rate of convergence. 

Given two finite sets of indices I -  and I ~ and functions f~(x), x E R n, find the 
solution of the following systems: 

f (x )~<0 ,  i E I  , f~(x)=0 ,  i E I  ~ (4.1) 

Suppose that functions f~(x) have continuous gradients Vf(x) and also that the 
gradients satisfy the Lipschitz condition with constant L: IlVf(x')-VfXx2)ll 
LIIx 1 -x211. 

We use the notation: 

F(x)=maxlmaxfii(x), max I f(x)l} , 
k i @ I -  i ~ i  o 

I2(x  ) = { i [ i E I  , f ( x )>~F(x ) -6} ,  

I ~ = {i I i @ I ~ I fi(x) I >~ F(x) - 6 }.  

We choose an initial point x ~ and assume that for all x that satisfy the inequality 
F(x) <~ F(x~ the gradients Vf(x) are limited in norm by the constant K. 

BASIC ASSUMPTION. There are numbers 6 > 0 and C > 0 such that for all x 
for which F(x)> O, F(x)<~ F(x ~ the following system is solvable for p: 

7fii(x)p + f~(x)<<-O, i E I ~ ,  

Vf(x)p + f ( x ) = 0 ,  i C I  ~  (4.2) 

Let  p(x) be the solution of (4.2) that has the minimum norm. Then for x such 
that F(x) > 0: 

][p(x)ll ~ CF(x).  (4.3) 

The inequality (4.3) characterizes, to a certain extent, the regular solvability of 
system (4.2). In particular, if the system (4.2) is transformed into a system of n 
equations in n unknowns, condition (4.3) is equivalent to the assumption that the 
matrix of the corresponding systems is nonsingular. As will be shown further on, 
(4.3) holds if the gradients Vf(x), i E I ~(x) U i E I~ are linearly independent 
for all x, F(x) > O. 

We turn now to the construction of the algorithm. The successive approxi- 
mations are constructed by the formula 

k + l  ~__xk pk x + ~p (xk )  , =p(x  k) (4.4) 
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where parameter  a g is chosen by sequentially halving unity until the following 
inequality is satisfied: 

F(x k + a~p(x~)) ~ (1 - eak)F(x ~) (4.5) 

where e is any number,  chosen from the beginning, 0 < e < 1. Clearly, formula 
(4.4) is applicable if F(x) > 0. Otherwise, the process stops and x k is the solution 

of problem (4.1). 

C O N V E R G E N C E  OF T H E  A L G O R I T H M .  The implementation of the algo- 
rithm proposed is characterized by the following theorem. 

T H E O R E M  4.1. Let all the assumptions o f  the preceding subsection be fulfilled. 
Then sequence {x~}, k = 0 , 2 , . . . ,  generated by the algorithm according to 
formula (4.4) converges to x*, the solution o f  system (4.1), and at the same time 

(a) for  a sufficiently great k, a ~ = 1; 
(b) for  a sufficiently great k, 

F(x ) LC2F2(x ; 

(c) for  any q, 0 < q < 1 there is a number k( q) such that 

2 k k (q )  

IIx* -x ll ~ L q ( 1  _ q) (4.6) 

for  all k >i k( q). �9 

R E M A R K  4.1. Let  us solve a system of n equations f (x )  = 0, i = 1, 2 . . . .  , n, 
where x E Nn. Then fi(x) >i F(x) - 6, i = 1 , . . . ,  n, F(x) = maxl~i~ . If(x) [ for any 
6, provided x is sufficiently close to the solution x*. Therefore,  I~ = 
{1, 2 , . . . ,  n} and system (4.2) takes the form 

Vf(x)p + f ( x ) = O ,  i=  l , 2 , .  . . , n .  (4.7) 

Therefore  the method proposed coincides with Newton's method in which 
iterations are performed by the formula x k+l = x  k +p(xk) ,  where p(x k) is the 
solution of system (4.7). The condition for the convergence of Newton's method 
is the nonsingularity at point x* of matrix Vf(x*), where Vf(x*) is an n • n matrix 
whose rows are Vf//(x*). In this case, p ( x ) = - ( V f ( x ) ) - I f ( x ) ,  where f (x)  is a 
column-vector whose components are f ( x ) .  But it follows from the last formula 
that I[p(x)[I ~< I[(Vf(x))-~[[ [[f(x)ll <~Coll(Vf(x))-~llF(x) where C 0 is a constant. It 
can be seen from this inequality that (4.3) holds in a certain neighborhood of 
point x*. 
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Thus it follows from the theorem proved that the usual Newton's method is 
locally convergent in solving a system of n equations with n unknowns. 

REMARK 4.2. If only one equation f(x) = 0 in n unknowns is to be solved, then 
system (4.2) takes the form 

Vf(x)p +f(x) = 0, (4.8) 

and it is required to find the solution of this equation with a minimum norm, i.e. 
to find the minimum of [Ip(x)[I 2 with constraints (4.8). Using the rule of Lagrange 
multipliers, we have in this case 

f(x) 1 
p(x) = ilVf(x)ll2 Vf(x), h e n c e  I l p ( x ) l l -  IlVf(x)lllVf(x)l. 

Clearly, formula (4.3) will be satisfied if IlVl(x)ll for all x. 

SUFFICIENT CONDITIONS OF CONVERGENCE. The main condition (4.3) 
which guarantees the convergence of the algorithm is not easy to check. This 
subsection describes conditions that can be checked more effectively. In par- 
ticular, for the convex case if there is an interior point in the domain defined by 
expressions (4.1), the conditions guarantee the convergence of the algorithm. 

Let the system contain only inequality constraints, i.e. 

f(x)<-O, i E I - .  (4:9) 

Then the subsidiary system (4.2) takes the form 

Vf(x)p + f(x)<~O, i E I ~  . (4.10) 

Clearly, this system can be solved with F(x)> 0 if the system 

Vf(x)p + F(x)<~O, i E I  ; (4.11) 

is solvable. 

LEMMA 4.1. I f  F(x)> O, then system (4.11) has a solution if and only if 

L~(x)=min ~ hiVf~(x)>0 
Ai~0 ifiI,~(x) 

where the minimum is taken over all Ai >10 such that Y'~I i(x) Ai = 1. Then the 
solution p*(x) of  system (4.11) with a minimum norm satisfies the equality 
IIp*(x)l[ = 1/[L~(x)]F(x). �9 

THEOREM 4.2. Let all the assumptions of  the subsection hold, except the basic 
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one. Moreover, let L~(x)/> y > 0 for all x such that 0 < F(x) <~ F(xk). Then the 
conditions of  the basic assumption are fulfilled too and all the results of  Theorem 
4.1 hold for problem (4.9). �9 

Note that the condition L~(x)i> y > 0 is natural enough, for it requires linear 
independence of vectors 7f~(x), i E 1 2(x). 

THEOREM 4.3. Let functions fi(x) in problem (4.9) be convex and continuously 
differentiable. Besides, let the domain defined by the inequality F(x)<~ F(x ~ be 
compact, the gradients Vf~(x) in this domain satisfy Lipschitz condition and there is 
a point x* such that F(x*) = y < O. Then with 6 < -  ~ all the conditions of  Theorem 
4.1 are fulfilled. �9 

The next problem, as shown below, is strongly related to the problem of solving 
systems of equalities and inequalities. 

5. Nonlinear Complementarity Problem 

In the traditional setting the nonlinear complementarity problem (NCP) can be 
defined as follows. 

Let a function f(x): Rn--> R n be given. Find a point x E R n, such that 

x>~O, f(x)>~O, xr f (x)=O. (5.1) 

When considering only a linear function f (x)= Mx + q, where the matrix 
M E  R " x  R", and the vectors x, q@R ~, we have the linear complementarity 
problem (LCP) of finding an x C R" such that for a given M and q 

x ~ O ,  Mx+q>~O, x r ( M x + q ) = O .  (5.2) 

The complementarity problem (CP) appears in various fields such as mathe- 
matical programming, game theory, economic equilibrium, etc. 

THE RELATIONSHIP OF THE CP WITH THE LINEAR PROBLEM OF MOMENTS 

The idea of the NCP (5.1) solution lies in not solving the problem itself, but the 
equivalent system of nonlinear inequalities: 

x>-O, (5.3) 

The linearization algorithm [10] is used for this purpose. The auxiliary problem of 
the latter has the form: 
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min{�89 liP 112}, with constraints 
p 

Vf(x)p + f i ( x ) ~ O ,  i E I ,  

p i + x i ~ O ,  i ~ I ,  

Vl(x)p + l(x) ~ 0 ,  

where I =  { 1 , 2 ,  . . . , n } .  

Here,  by I(x), the expression xrf(x) 
Vl(x) = xrVf(x) + f(x)  T. 

(5.4) 

is denoted. It should be noted that 

The solution to this problem, in a sense, is equivalent to the solution of a linear 
problem of moments [13]. In [15] this fact has been considered in detail. Some 
generalizations of the results obtained in [15] can be found in [16] and [17]. 

Let  us write the Lagrange expression for the constraints of problem (5.4): 
L ( p ,  u, v, u0) = v r (p  + x) + ur(Vf(x)p + f(x)) - Uo(Vl(x)p + l(x)) = (v r + urVf(x) - 
uoVl(x)) p + v~ r + urf(x) - u0l(x ). 

Here u t> 0, v ~> 0, u 0 ~ 0 are Lagrange multipliers for the respective constraints. 
From Theorem 5.10 [13] it follows that if there exists a constant C > 0 such that 
the inequality 

ell v~ + u try(x) - uoVl(x)l I/> - v ~  - u~f(x) + uoZ(x ) (5.5) 

is satisfied for any u >/0, v i> 0, u 0 i> 0 then the system of linear inequalities of the 
problem (5.4) is solvable and Itp[[ ~<c. 

Thus, taking account of the above-said, it is easy to formulate the following 
proposition. 

T H E O R E M  5.1. I f  the domain g2~ = {x/> 0: f ( x ) >1 - e, x r  f (x  ) <~ e } , where e > O, 
is a compact set and there is a constant C > 0 such that inequality (5.5) is satisfied at 
all points o f  the domain f~, for any vectors u >i 0, v >I 0 and scalar value u 0 1> 0, 
then the auxiliary problem (5.4) has a solution bounded in norm by the constant C 
everywhere in [2. �9 

In our opinion this theorem is essential because NCP can now be seen from a 
relatively new viewpoint. Namely, it reveals the relation of the latter to important 
mathematical problems, i.e., the linear problem of moments. 

And there, the solvability condition in form (5.5) for the auxiliary problem 
(5.4), formulated by Theorem 5.1, is actually a sufficient condition for existence 
of the NCP solution, and as shown later, it is strongly related to other well-known 
similar conditions. 

BASIC ASSUMPTIONS. Henceforth, besides assumptions of Theorem 5.1, we 
shall make the following assumptions: 

(1) All functions f (x) ,  i E I are continuously differentiable; 
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(2) The gradients Vf(x), i E I and the vector-function f(x) satisfy the Lipschitz 
condition on the compact set f~  with the constant L. 

(3) The solution x* of NCP satisfies the relations 

x * = 0 ,  f / ( x * ) > 0 ,  i E I C I ,  

x * > 0 ,  f / ( x * ) = 0 ,  i E i = - I \ i .  

(4) The gradients Vf//(x), i E I at the point x* are linearly independent. 
Thus, the general conditions (1) and (2) of linearization algorithm [10], are 

supplemented by two more sufficient new assumptions. However, these hypo- 
theses are not too onerous. In fact, the assumptions (3) and (4) quite logically 
require only a certain solution-regularity and, as we shall see later allow for a 
transition in a certain neighborhood of the point x* to a procedure which ensures 
quadratic convergence of the below defined algorithm. 

T H E  F O R M U L A T I O N  OF TH E A L G O R I T H M  

Now to formulate the computation procedure, offering a solution to a system of 
nonlinear inequalities (5.3) and, consequently, of NCP (5.1) itself. 

Let the numbers 0 < 3' < 1, 0 < ~ < 1 be chosen. We describe the general step of 
an algorithm. Let x k be given. 

1. Solve the auxiliary problem (5.4) with x --x k and determine pg = p(xk). 
2. Divide a set of indices ! into two groups I and I in the following way: 

= (i E I: Yfii(x k) >i x ki}, 

i =  { / E l :  yxki>~fi(xk)}. 
- -  = 

Verify the satisfaction of the condition I U I = I. If it is not fulfilled, go to step 4. 
If the latter is true, then calculate yk by solving the following system of linear 
equations: 

k k Yi + x i  = 0 ,  i E I ,  
k k + k (5.6) 

( V f ( x ) y  f (x  ) = 0 ,  i E I .  

If the system has no solution, then go to step 4. 
3. If the system (5.6) has a solution yk, then we set s = xk+  yk. Verify the 

validity of a system of inequalities 

{ 3"f(x-) ~> :7/, i @ i ,  

If the latter is satisfied, then we s e t  x k + l  = s and go back to step 1, else we go 
to step 4. 

4. At  first set a = 1. Divide a by 2 ~ k = 1, 2 , . . .  until the inequality Y(x k+a) <- 



T H E  L I N E A R I Z A T I O N  M E T H O D  493 

( 1 -  a~:)Y(x k) is satisfied, where Y ( x ) = m a x { 0 , - f l ( x ) , . . . , - f , ( x ) ,  l(x)}, and 
X k+l  ~_ X k -~ o tkp  k. 

Go back to step 1. 

T H E O R E M  5.2. Let conditions of  Theorem 5.1 and the main assumptions (1) 
and (2) be satisfied. Then the suggested algorithm generates a sequence {x k} for 
which y(xk)---~0. I f  in addition, the conditions (3) and (4) are satisfied, and the 
point x* is the unique solution of NCP, then the sequence (x k} converges 
quadratically to x*. �9 

R E M A R K  5.1. As can be seen from an algorithm construction, transition from 
k x k + l  x to is stipulated by steps 3 or 4. The latter corresponds to the general 

linearization algorithm [10] and guarantees only the existence of such a constant 
C > 0, that Y(x ~) ~< C/k. Thus convergence is liable to be slow by virtue of the 
first statement of Theorem 5.2. 

REMARK 5.2. To prove the second statement of Theorem 5.2, it is necessary to 
evaluate the expression II x k §  x*ll, where x k+~ is chosen in step 3 of the 
algorithm. It is obvious that  transition from x k to x k+l in step 3 results in 
transition to a quadratic rate of convergence. It is just at this step that local 
properties of the complementarity problem are taken into account, and a faster 
convergence rate is possible only in a local neighborhood of solution x*. Namely, 
in the region where a system of the type (5.6) makes sense. Note that the latter is 
correctly defined in a certain neighborhood of solution x* by virtue of assumption 
(3) and continuity of the function f(x). Assumption (4) guarantees solvability of 
the latter in the neighborhood of the point x*. 

REMARK 5.3. The criterion of proximity to a solution in the form of de- 
termination of a set of indices I and I permits us to solve in a reasonable way the 
problem of combining a global convergence property for the general NCP 
algorithm with a quadratically convergent local Newton's procedure. 

EXISTENCE THEORY. It is not difficult to see that the auxiliary problem (5.4) 
representing the quadratic programming problem, is an essential link in formulat- 
ing the NCP algorithm. 

Note that the condition of existence for the solution to the auxiliary problem 
(5.4) formulated by the Theorem 5.1 is actually the condition of existence of the 
NCP solution. In fact, if the inequality (5.5) of Theorem 5.1 holds, then the 
auxiliary problem (5.4) is solvable, and this fact, in turn, brings about the 
existence of a solution to problem (5.3). The proof of the latter fact is given by 
Theorem 5.2 by establishing the convergence of the algorithm to such a solution. 

In this sense it is possible to talk about a constructive existence theory for the 
NCP. As mentioned above, condition (5.5) results from the relation of the last 
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problem to the linear problem of moments. The next theorem investigates the 
question of how intrinsic this relationship is. 

Now let us recall that the first general theorems of the NCP solution existence 
used various forms of function monotonicity f(x). Thus, in [18] Karamardian 
proved the existence and uniqueness of a solution under the condition that 
mapping f(x) is continuously and strongly monotonic, i.e. there exists such/x > 0, 
that for any x, y/> 0 the inequality ( f (x)  - f ( y ) ) r ( x  - y) >! tz mix - yll 2 is valid. 

In the special case when the mapping f(x): ~n.....~ ~n is continuously differenti- 
able, the existence condition for the solution of the auxiliary problem (5.4) stated 
by Theorem 5.1 follows from the condition of strong monotonicity of f(x). 

THEOREM 5.3. Let the domain ~ be a compact set as before. Suppose now that 
mapping f(x) is continuously differentiable and strongly monotonic. Then there 
exists a constant C > O, such that relation (5.5) is satisfied for any u >i O, v >1 O, 
u 0 i> 0, at all points of  the domain f t .  �9 

At present there are a great number of publications on various generalizations of 
theorems of NCP (5.1) solution existence, including the condition of coerciveness 
of operator f(x) [19], the condition of existence in terms of "exceptional 
sequences" [20], and others. Theorems 5.1 and 5.3 show that the new condition of 
an existence of a solution to the complementarity problem formulated in the 
present work is natural in the context of already-known and similar conditions in 
the general theory of the problem. 

Further confirmation of the above-claim can be supplied by the results 
concerned with the linear complementarity problem (5.2). 

Note that Theorem 5.1 substantiates the LCP solution algorithm. Convergence 
of the latter can be proved with less strict constraints. Actually, in Theorem 5.2 it 
is not necessary to require fulfillment of the basic conditions (1) and (2), since 
they are held automatically for linear functions. Note that strong monotonicity of 
f (x)  implies positive definiteness of the Jacobian matrix Vf(x) which coincides with 
matrix M in the case of the linear complementarity problem (5.2). In this case 
one may talk about strict copositiveness of matrix M. Then the  following 
statement is valid. 

COROLLARY 5.1. Let ft ,  be a compact set as before. Let also f(x) = Mx + q. 
Besides, let matrix M be strictly copositive (i.e. y r M y  > 0 holds for any y >~ O, 
y ~ 0). Then there exists a constant C > 0 such that the relation 

CIIv + u T M  - ,lo(X (M T + M) + qT) l l  ~ - - v T x  -- u (Mx + q) 

+ u0(xrMx + xrq) (5.7) 

holds at all points of the domain tq,. �9 
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To prove this corollary it suffices to note that in linear cases the concepts of strict 
copositiveness and strong copositiveness of matrix M coincide. 

The following statement reveals a connection of the condition of the LCP 
solution of the type (5.7) with the similar well-known condition, e.g. the mapping 
f(x): En__> R~ being coercive. 

COROLLARY 5.2. Let  the requirements o f  the previous  corollary be satisfied. 

Moreover ,  let the operator f ( x )  be coercive (i.e. f o r  any x @ ~ x r f ( x )  >1 ~(llxll)llxll 
holds,  where y(t)---~ + ~  and t---> + %  t > 0). Then there exists a constant C > 0 such 

that (5.7) is valid at all points  o f  the domain  ~ . �9 

The proof of the given statement is based on the fact that determinations of 
coercitiveness of operator f ( x )  and of strict copositiveness of the matrix M in the 
linear case coincide. 

Thus, it was shown, that a condition of type (5.7) is natural. Namely, it proved 
to be closely related to earlier similar known conditions for the existence of a 
solution for the LCP. 

Therefore it seems reasonable to suppose that the proposed algorithm for a 
wide class of complementarity problems would be reasonably efficient. Several 
examples of numerical verification of this conclusion can be found in [16]. 

6. Multiobjective Optimization Problem 

A vector optimization problem arises at the first stage of the general procedure of 
decision-making, when from the whole set of admissible alternatives some set is 
singled out, each element of which meets the requirements of an efficient 
solution. 

Let the functions f ( x ) ,  i = 1, 2 . . . .  , m ,  be specified. They form the vector 
criterion f ( x )  = ( f l ( x ) , . . .  , fm(X)) of some vector optimization problem 

min f ( x ) ,  under constraints 

x~Xg={x~nlgj(x)<~o, j : l , 2 , . . . , l } .  (6.1) 

When considering only linear functions f i(x) r = c  i x ,  i =  l , 2 , .  . . , m  andgj(x)= 
T 

aj x, j = 1, 2 . . . .  , l we may already say about a linear vector optimization 
problem 

min Cx under constraints 

x ~ Z =  { x ~ "  I A x < - b }  , (6.2) 

where C is the (n X m)-matrix of objective function coefficients, A is the (n x l)- 
matrix of constraint coefficients and b is the/-vector. 

The majority of the known strategies of the vector optimization problem 
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solution lie in characterizing effective solutions in terms of optimal solutions of 
some corresponding scalar optimization problem. The difference in methods of 
reducing the vector criterion f(x) to one objective function defines the convention- 
al classification of approaches to a solution of the vector optimization problem. 

This section investigates the properties of methods based on the idea of 
linearization in the aspect of multi-objective optimization. These properties are 
characterized in terms of weak-efficient, efficient (Pareto-optimal) and proper- 
efficient solutions (see [16], [21]-[23]). The obtained results are true for a linear 
case [24]. 

Let us introduce some definitions [21]. The solution x is called weak-efficient 
(efficient) if there is no such x r  that f ( x ) <  (<~)f(x*) is satisfied. 

Admissible solution x* is called proper-efficient if it is efficient and if there 
exists such a positive number M that for any i = 1, 2 , . . . ,  m and x ~ Ng for which 
the inequality f i i(x*)>f(x) is satisfied and some u E { 1 , . . .  ,m} such that 
fo(x*) <f~(x) the inequality [ ( f (x*) - f (x) ) / ( f~(x)  -fo(x*)))] ~< M is satisfied. 

BASIC ASSUMPTIONS. Let us consider some modification of the linearization 
algorithm [10] based on necessary conditions of the efficiency of the problem 
(6.1). Relate the auxiliary problem to every point x E Ng: 

rain (~ + �89 under constraints 
p,~ 

7f(x)p <~ ~ , i E I , 

Vgi(x)p + gi(x) <~ O, j E J ,  (6.3) 

where I =  {1, 2, . . . , m}, J = { 1 , 2 , . . . , l ) .  
Introduce the following assumptions. Let there exist such N > 0 that 
(a) for some i @ I the s e t  ~ u  = {X ~ ~n [ fii(X) .~ N"  G(x) ~ Ci) is  limited, where 

C i = f (x0)  + N .  G(xo), G(x) : max{0, g l ( x ) , . . . ,  gl(x)}; 
(b) gradients Vf/(x), i E I and Vgj(x), j ~ J in ~2 N satisfy Lipschitz condition with 

the constant L;  
(c) there exist such Lagrange multipliers of the problem (6.3) vj(x), j E J, that 

Ejsj  vj(x)<~ N and the latter is solvable with respect to p ~ ~" for any 

X ~ ~'~N" 

It is easy to see that the problem (6.3) is equivalent to the following convex 
programming problem [10]: 

1 2 min { ~ ]] Pit +max {Vf (x)p } }, under constraints 
p iCI 

Vgj(x)p + Vgj(x) <~ O , ] @ J . 

Now we write necessary and sufficient conditions relating the minimum point to 
Lagrange multipliers of the problem (6.3). Note that the Lagrange function has 
the form: 
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1 2 L(p,  +=tlpll 
iGI  

+ ~ vj(x)[Vgj(x)p + gj(x)] = ~ : [1 -  ~2 ui(x)] + �89 2 
j E J  i E l  

+ ~ ui(x)Vf(x)p + ~ vj[Vg~(x)p + gi(x)]. 
i ~ I  j ~ J  

There  exist such ui(x ) >i O, i E I, vj(x) >i O, j E J, that 

Ui(X)[Vf(x)p -- ~] = O, i E I ,  (6.4) 

Vj(X)[Vgj(x)p + gj(x)] = 0 ,  j E J ,  (6.5) 

Z ui(x) = 1,  (6.6) 
i ~ l  

p(x) + ~ ui(x)Vf(x ) + ~ vj(x)Vgj(x) = 0 .  (6.7) 

ALGORITHM FORMULATION AND PRINCIPAL RESULTS 

Now we formulate the computational procedure for solving the vector optimi- 
zation problem. Let  x ~ be the initial approximation and e, 0 < e < 1 be chosen. 
Let  the point x k be already obtained. Then (1) we solve the auxiliary problem 
(6.3) for x = x ~ and find pk =p(xk) ;  (2) we find the first value of a = 1, 2 , . . .  , for 
which the inequality 

max [ f (x  + ap)  - f (x)]  + NG(x + ap) <~ NG(x) -   llpll 2 , 
i E I  

(6.8) 

will be satisfied for a = (1/2)  s. If such s is found then assume a~ = 2 -s, X k + l =  
x k + a~p ~. 

From the assumption about the continuity of vector function f(x) components 
on the non-empty compact f~N the existence of all kinds of effective points follows 
[21]. Now we formulate the first convergence theorem. 

T H E O R E M  6.1. Let the assumptions (a)-(c) of  this section be satisfied. In 
addition, let the regularity condition be satisfied at any limit point x* of  the 
sequence {x k} of  points generated by the proposed algorithm: there is such point 
p ~ ~" that for any j ~ J(x*) = {j E J[ gj(x*) = 0} the inequality Vg(x*)p < 0 is 
satisfied. Then the point x* satisfies the necessary conditions of  weak efficiency and 
II/11--,0. 

The proof  of the given Theorem is based on reducing the extreme necessary 
conditions of problem (6.3) in solution to the equation 
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E u*Vfii(x*)+ E v~Vgi(x*)=O. (6.9) 
i E l  ]@J(x*) 

The latter, together with the regularity condition and the relation (6.6), corre- 
spond to the necessary condition of weak-efficiency of the point x* formulated by 
the Da Cunha-Polak-Geoffrion theorem presented in [21]. It is shown there that 
under some assumptions concerning the convex functions f(x) and g(x), the 
expression (6.9) corresponds to sufficient optimal conditions. Therefore the 
following statements are true. 

COROLLARY 6.1. Let the vector-function f(x) be pseudoconvex and functions 
gj(x) for any j @ J(x*) be quasi-convex. Then necessary and sufficient conditions of 
weak-efficiency are satisfied at the point x* in the conditions of Theorem 6.1. 

COROLLARY 6.2. If, in addition, the strict quasi-convexity of the vector-function 
f(x) and the convexity of ?~g are assumed then the point x* may be stated to satisfy 
necessary and sufficient conditions of efficiency (Pareto-optimum). 

According to the second part of the Da Cunha-Polak-Geoffrion theorem, the 
expression (6.9) is a necessary condition of the proper efficiency of solution x* if 
the condition u i > 0 for any i E I and E ui = 1 is satisfied in it. It is not difficult to 
see that in the general case the suggested algorithm does not provide Lagrange 
positive multipliers. However, the latter may be guaranteed by having imposed 
some conditions of generalized regularity (CGR). Namely, let Vf(x), i r v, i E I 
and Vgj(x), j E J(x*) be linearly independent at the point x*E ~g for any v E I. 

REMARK 6.1. It is clear that the given condition is a certain generalization of 
the usual condition of regularity of a single-objective mathematical programming 
problem in form of the condition of a linear independence of the gradients o f  
active constraints. 

The assumption made makes it possible to strengthen the result of Theorem 
6.1. 

THEOREM 6.2. Let the major assumptions (a)-(c) of this section be fulfilled. 
And let the CGR be satisfied at the limit point x* of the sequence {x k} of points 
generated by the algorithm. Then the point x* satisfies the necessary conditions of 
proper efficiency. 

The work in [21] shows that if Lagrange multipliers u*, i E I are positive and the 
equality in (6.9) is fulfilled then the assumption about the pseudo-convex function 
f(x) is already insufficient for proper-efficiency of solution as it is the case in 
Corollary 6.2. 
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COROLLARY 6.3. Let the conditions of  the previous theorem be satisfied. Then 
if  the vector-function f(x) is convex and functions gj(x) are quasi-convex for any 
j @ J(x*) then the point x* satisfies the necessary and sufficient conditions of  
proper-efficiency. 

So far we have considered the problem of vector optimization in the general form, 
i.e., when the objective and constraint functions have a nonlinear character. It is 
in this case that we should expect the greatest effect from the application of the 
suggested algorithm. However, its use in the linear case is quite reasonable [10]. 
The linear problem of vector optimization possesses its specific peculiarities that 
allow the conditions of algorithm application be substantially simplified and 
therefore the finite results be strengthened. 

First of all we note that not all assumptions (a)-(c) of this section remain 
necessary. Thus, the condition (b) is satisfied automatically. The convexity of 
objective and constraints functions allows on to speak of both necessary and 
sufficient conditions of efficiency of the limiting point x* of the algorithm. 

If we take into account the fact that in the linear case the sets of Pareto-optimal 
and proper efficient solutions coincide [21] then the given characteristic of the 
point x* is complete. Here one can take from the above-mentioned two 
conditions, a weaker one. 

T H E O R E M  6.3. Let assumption (a) and (c) of this section be fulfilled. In 
addition, let the regularity condition be satisfied at any limit point x* of  the 
sequence {x ~} of  points generated by the suggested algorithm: there is such point 
p ~ ~" that for any j E J(x*) = {j E J lajx* = b} the inequality ajp < 0 is fulfilled. 
Then the point x* satisfies necessary and sufficient conditions of  efficiency. The 
problem is solved in a finite number of  steps. 

The first part of this theorem is a simple corollary of Theorem 6.1 proved for the 
vector optimization problem in the general form. The proof of the fact that the 
linear vector optimization problem is solved in a finite number of steps is in 
principle based on the ideas of the proof of the alike fact for the general 
linearization method in case of the linear programming problem and shown in 
[24]. 
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